Anyons and matrix product operator algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Product of Vertex Operator Algebras

Let V =V1 ⊗ V2 be a tensor product of VOAs. Using Zhu theory we discuss the theory of representations of V (associative algebra, modules and ’fusion rules’). We prove that this theory is more or less the same as representation theory of tensor product of the associative algebras.

متن کامل

Jordan product determined points in matrix algebras

Let Mn(R) be the algebra of all n×n matrices over a unital commutative ring R with 6 invertible. We say that A ∈ Mn(R) is a Jordan product determined point if for every R-module X and every symmetric R-bilinear map {·, ·} : Mn(R)×Mn(R) → X the following two conditions are equivalent: (i) there exists a fixed element w ∈ X such that {x, y} = w whenever x ◦ y = A, x, y ∈ Mn(R); (ii) there exists ...

متن کامل

Zero Triple Product Determined Matrix Algebras

Let A be an algebra over a commutative unital ring C. We say that A is zero triple product determined if for every C-module X and every trilinear map {·, ·, ·}, the following holds: if {x, y, z} 0 whenever xyz 0, then there exists a C-linear operator T : A3 −→ X such that {x, y, z} T xyz for all x, y, z ∈ A. If the ordinary triple product in the aforementioned definition is replaced by Jordan t...

متن کامل

Positive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras

In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Physics

سال: 2017

ISSN: 0003-4916

DOI: 10.1016/j.aop.2017.01.004